# a 44 Integers 10 ( 2010 ) , 523 - 529 on the Frobenius Problem

نویسنده

  • Amitabha Tripathi
چکیده

For positive integers a, k, let Ak(a) denote the sequence ak, ak + 1, ak + a, . . . , ak + ak−1. Let Γ ( Ak(a) ) denote the set of integers that are expressible as a linear combination of elements of Ak(a) with non-negative integer coefficients. We determine g ( Ak(a) ) and n ( Ak(a) ) which denote the largest (respectively, the number of) positive integer(s) not in Γ ( Ak(a) ) . We also determine the set S! ( Ak(a) ) of positive integers not in Γ ( Ak(a) ) which satisfy n +Γ! ( Ak(a) ) ⊂ Γ! ( Ak(a) ) , where Γ! ( Ak(a) ) = Γ ( Ak(a) ) \ {0}.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Frobenius Problem, Rational Polytopes, and Fourier-Dedekind Sums

where a1, . . . , an are positive integers. This polytope is closely related to the linear Diophantine problem of Frobenius: given relatively prime positive integers a1, . . . , an, find the largest value of t (the Frobenius number) such that m1a1 + · · · + mnan = t has no solution in positive integers m1, . . . , mn. This is equivalent to the problem of finding the largest dilate tP such that ...

متن کامل

Feasibility of Integer Knapsacks

FEASIBILITY OF INTEGER KNAPSACKS∗ ISKANDER ALIEV† AND MARTIN HENK‡ Abstract. Given a matrix A ∈ Zm×n satisfying certain regularity assumptions, we consider the set F(A) of all vectors b ∈ Zm such that the associated knapsack polytope P (A, b) = {x ∈ R≥0 : Ax = b} contains an integer point. When m = 1 the set F(A) is known to contain all consecutive integers greater than the Frobenius number ass...

متن کامل

An Extreme Family of Generalized Frobenius Numbers

We study a generalization of the Frobenius problem: given k positive relatively prime integers, what is the largest integer g0 that cannot be represented as a nonnegative integral linear combination of the given integers? More generally, what is the largest integer gs that has exactly s such representations? We construct a family of integers, based on a recent paper by Tripathi, whose generaliz...

متن کامل

The Computational Complexity of the Frobenius Problem

In this paper, as a main theorem, we prove that the decision version of the Frobenius problem is Σ2 -complete under Karp reductions. Given a finite set A of coprime positive integers, we call the greatest integer that cannot be represented as a nonnegative integer combination of A the Frobenius number, and we denote it as g(A). We call a problem of finding g(A) for a given A the Frobenius probl...

متن کامل

An extension of the Frobenius coin - exchange problem 1 Matthias Beck and Sinai Robins 2 Dedicated to the memory of

Given a set of positive integers A = {a1, . . . , ad} with gcd(a1, . . . , ad) = 1, we call an integer n representable if there exist nonnegative integers m1, . . . ,md such that n = m1a1 + · · ·+ mdad . The linear diophantine problem of Frobenius asks for the largest integer which is not representable. We call this largest integer the Frobenius number g(a1, . . . , ad). One fact which makes th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010